

Wholesale funding dry-ups

Christophe Pérignon David Thesmar Guillaume Vuillemey

HEC Paris MIT HEC Paris

16th Annual Bank Research Conference FDIC

September 2016

Motivation

Wholesale funding:

- A growing source of bank funding
 - Repurchase agreements, interbank loans, certificates of deposit

Motivation

Wholesale funding:

- A growing source of bank funding
 - Repurchase agreements, interbank loans, certificates of deposit
- Prevailing view: Wholesale funding is fragile
 - Uninsured, short-term, unsecured

Motivation

Wholesale funding:

- A growing source of bank funding
 - Repurchase agreements, interbank loans, certificates of deposit
- Prevailing view: Wholesale funding is fragile
 - Uninsured, short-term, unsecured
- Penalized by new liquidity regulation (LCR, NSFR)

• Key friction: asymmetric information.

- Key friction: asymmetric information.
- Lenders equally uninformed (Akerlof 1970; Stiglitz & Weiss 1981)
 - High- and low-quality banks indistinguishable by lenders
 - Adverse selection: high-quality banks withdraw as rates increase
 - ⇒ Relative quality of pool of borrowers decreases in periods of stress

- Key friction: asymmetric information.
- Lenders equally uninformed (Akerlof 1970; Stiglitz & Weiss 1981)
 - High- and low-quality banks indistinguishable by lenders
 - Adverse selection: high-quality banks withdraw as rates increase
 - ⇒ Relative quality of pool of borrowers decreases in periods of stress
- Some lenders are informed (Gorton & Pennacchi 1990)
 - Debt derives value from being information-insensitive
 - When information-sensitive: uninformed lenders cut funding
 - Informed lenders still lend to high-quality banks
 - ⇒ Relative quality of pool of borrowers increases in periods of stress

- Key friction: asymmetric information.
- Lenders equally uninformed (Akerlof 1970; Stiglitz & Weiss 1981)
 - High- and low-quality banks indistinguishable by lenders
 - Adverse selection: high-quality banks withdraw as rates increase
 - ⇒ Relative quality of pool of borrowers decreases in periods of stress
- Some lenders are informed (Gorton & Pennacchi 1990)
 - Debt derives value from being information-insensitive
 - When information-sensitive: uninformed lenders cut funding
 - Informed lenders still lend to high-quality banks
 - ⇒ Relative quality of pool of borrowers increases in periods of stress
- Test competing theories
 - Ideal laboratory: European market for certificates of deposits (CDs)
 - Different policy implications: transparency vs. opacity

Main results

- R1: No market-wide freeze
 - But many bank-specific funding dry-ups

Main results

- R1: No market-wide freeze
 - But many bank-specific funding dry-ups
- R2: Low-quality banks are more likely to lose access to wholesale funding in times of stress
 - Inconsistent with adverse selection
 - Consistent with heterogeneity across lenders

Main results

- R1: No market-wide freeze
 - But many bank-specific funding dry-ups
- R2: Low-quality banks are more likely to lose access to wholesale funding in times of stress
 - Inconsistent with adverse selection
 - Consistent with heterogeneity across lenders
- R3: In times of stress, funds are reallocated towards high-quality banks
 - Inconsistent with adverse selection
 - Consistent with heterogeneity across lenders

Data on certificates of deposit

Certificate of deposit (CD)

- Issued by credit institutions
- Initial maturity between 1 day and 1 year (median = 33 days)
- Unsecured
- Issued over-the-counter, placed mostly to money market funds

Data on certificates of deposit

Certificate of deposit (CD)

- Issued by credit institutions
- Initial maturity between 1 day and 1 year (median = 33 days)
- Unsecured
- Issued over-the-counter, placed mostly to money market funds

CD dataset

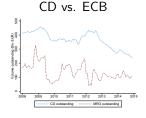
- From Banque de France, over 2008-2014
- 1,383,202 ISIN-level observations, with 838,703 individual ISINs
- All events: issuance, re-issuances, buybacks

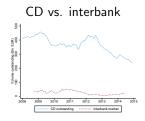
Data on certificates of deposit

Certificate of deposit (CD)

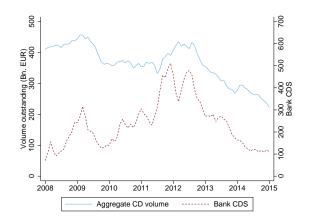
- Issued by credit institutions
- Initial maturity between 1 day and 1 year (median = 33 days)
- Unsecured
- Issued over-the-counter, placed mostly to money market funds

CD dataset


- From Banque de France, over 2008-2014
- 1,383,202 ISIN-level observations, with 838,703 individual ISINs
- All events: issuance, re-issuances, buybacks


■ More than 80% of all euro-denominated CDs

CD market versus other wholesale markets



- CD is a large segment of wholesale funding
 - Similar size as the repo market
 - Larger than ECB funding and unsecured interbank market
 - No previous study on the CD market

No market freeze

- R1: No market-wide freeze in CD market
 - ... even when CDS spreads increase

CD issuers

CD issuers

- 276 individual issuers
- 196 French, 80 from IT, DE, UK, NL, IE, etc.
- Most large European banks

CD issuers

CD issuers

- 276 individual issuers
- 196 French, 80 from IT, DE, UK, NL, IE, etc.
- Most large European banks

Matching with balance sheet and market data

- 263 issuers matched with balance sheet data (Bankscope)
- Short-term credit ratings (Fitch)
- Stock price and CDS spread data (Bloomberg)

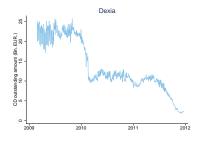
The importance of bank-specific dry-ups

- Definitions of funding dry-ups
 - Full dry-up: Amount outstanding falls to zero
 - Partial dry-up: Loses 50% or more in 50 days or less

The importance of bank-specific dry-ups

- Definitions of funding dry-ups
 - Full dry-up: Amount outstanding falls to zero
 - Partial dry-up: Loses 50% or more in 50 days or less
- 75 events, including 29 full dry-ups

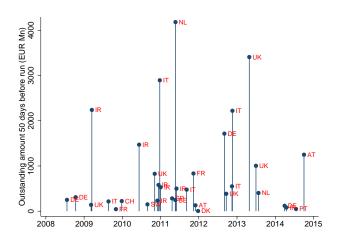
The importance of bank-specific dry-ups



- Definitions of funding dry-ups
 - Full dry-up: Amount outstanding falls to zero
 - Partial dry-up: Loses 50% or more in 50 days or less

■ 75 events, including 29 full dry-ups

One full and one partial dry-up



Timeline of events

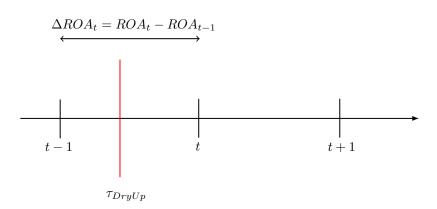
■ Year with highest number of funding dry-ups is 2011

Observable characteristics before dry-ups

■ Banks facing a funding dry-up are weaker on observables

	One year before event		
	Diff. from	Diff. from	
	mean	median	
ROA	-1.249***	-0.577***	
Net income / Assets	-0.014***	-0.006***	
Impaired loans / Equity	55.879***	52.790***	
Equity / Assets	-0.036***	-0.033***	
CDS spread	82.180	110.245**	
Short-term credit rating	-0.424***	-0.474**	

- R2: Low-quality banks are more likely to lose access to wholesale funding in times of stress
 - lacktriangle Quality: Unobservable quality o Changes in performance


- R2: Low-quality banks are more likely to lose access to wholesale funding in times of stress
 - Quality: Unobservable quality → Changes in performance

Base regression

$$\begin{array}{rcl} \Delta ROA_{i,t} & = & \beta_0 \mathbbm{1} \left\{ t - 1 \leq \tau_{DryUp_i} < t \right\} + \beta_1 \mathsf{Size}_{i,t-1} + \beta_2 \mathsf{Controls}_{i,t-1} \\ & + \beta_3 \mathsf{Controls}_{c,t-1} + FE_c + FE_t + \varepsilon_{i,t}, \end{array}$$

- $\Delta ROA_{it} = ROA_{it} ROA_{it-1}$
- Coefficient of interest: β_0

- Facing a dry-up predicts a decrease in ROA
 - Inconsistent with adverse selection being large

Dependent variable: $\Delta ROA = ROA_t - ROA_{t-1}$

	Ba	seline	Share CD	Crisis
DryUp	-0.341**	-0.508*** (0.139)	-0.874*** (0.176)	-0.610***
$Size_{t-1}$	(0.135)	-0.018	(0.176) -0.004	(0.143) -0.017
ROA_{t-1}		(0.025) -0.713***	(0.025) -0.717***	(0.025) -0.717***
$Impaired \; / \; Loans_{t-1}$		(0.038) -0.025***	(0.037) -0.026***	(0.038) -0.026***
GDP growth		(0.009) 38.957***	(0.009) 37.561***	(0.009) 38.732***
$DryUp * Share \; CD \in [4\%, 9\%]$		(4.969)	(4.955) 0.372	(4.954)
$DryUp * Share \; CD \geq 9\%$			(0.407) 0.351	
DryUp * Crisis			(0.302)	0.133 (0.192)
Adj. R^2 N. Obs.	-0.001 948	0.407 684	0.415 684	0.411 684

Dry-ups predict future market outcomes

- Concern for tests of asymmetric information
 - $lue{}$ Information of market agents eq information of the econometrician

Dry-ups predict future market outcomes

- Concern for tests of asymmetric information
 - Information of market agents \neq information of the econometrician
- $lue{}$ Use market data ightarrow Incorporate information in real time
 - Dry-ups predict increases in CDS spreads
 - Also predict negative excess stock return, but insignificant

 Δ CDS spread

	6 months		1 year	
DryUp	36.443** (15.748)	49.033*** (17.577)	43.824* (25.510)	61.896** (28.891)
$Size_{t-1}$		-0.707 (0.901)		-1.680 (1.770)
ROA_{t-1}		-2.354 (1.552)		3.948 (2.756)
Impaired / Loans $_{t-1}$		-2.041* [*] *		-2.410* [*]
GDP growth		(0.787) -1214.823*		(1.180) -2187.64
		(650.329)		(1437.262)
Adj. R^2	0.570	0.585	0.563	0.573
N. Obs.	2,099	956	1,937	956

Endogeneity concerns

■ Evidence consistent with presence of informed lenders

Endogeneity concerns

- Evidence consistent with presence of informed lenders
- However, reverse causality concern
 - Can funding dry-ups cause decreases in ROA?
 - As in models of bank runs (Diamond & Dybvig 1983).

Endogeneity concerns

Evidence consistent with presence of informed lenders

- However, reverse causality concern
 - Can funding dry-ups cause decreases in ROA?
 - As in models of bank runs (Diamond & Dybvig 1983).

Three solutions

- $lue{}$ Use changes in impaired loans as dependent variable ightarrow [See results]
- Interact DryUp dummy with share of CD funding \rightarrow [See results]
- lacksquare Banks do not downsize significantly o No fire sales [See results]

Maturity shortening

- Uninformed lenders value information-insensitive securities
 - In stress, long-term debt becomes information-sensitive first
 - Predicts maturity shortening before dry-ups

Dependent variable: Weighted average maturity of new issues

	Panel A: Partial and full dry-ups	Panel B: Full dry-ups only
$\tau - 1$	-24.660*** (2.281)	-29.732*** (4.521)
$\tau - 2$	-17.278* [*] *	-30.198* [*] **
	(3.939)	(6.004)
$\tau - 3$	-12.134***	-14.664***
	(1.699)	(4.742)
$\tau - 4$	-7.628	-11.610
	(4.902)	(7.368)
$\tau - 5$	-7.506*	-3.930
	(3.750)	(5.243)
$\tau - 6$	-0.689	15.504***
	(4.132)	(3.858)
Adj. \mathbb{R}^2	0.166	0.165
N. Obs.	11,420	11,420

Reallocation

R3: In times of stress, funds are reallocated to high-quality banks

Reallocation

- **R3:** In times of stress, funds are reallocated to high-quality banks
- Issuance in excess of the market

$$E_{i,t} = \left[\log(CD_{i,t}) - \log(CD_{i,t-1})\right] - \left[\log(CD_{m,t}) - \log(CD_{m,t-1})\right]$$

- CD_{it} : Outstanding amount by i in month t
- lacksquare CD_{mt} : Aggregate size of CD market in month t

Reallocation

- **R3:** In times of stress, funds are reallocated to high-quality banks
- Issuance in excess of the market

$$E_{i,t} = \left[\log(CD_{i,t}) - \log(CD_{i,t-1})\right] - \left[\log(CD_{m,t}) - \log(CD_{m,t-1})\right]$$

- $lacktriangleq CD_{it}$: Outstanding amount by i in month t
- lacksquare CD_{mt} : Aggregate size of CD market in month t

Probit specification

$$\Pr(I_{i,t} = 1 | X_t) = \Phi(\beta_0 \Delta ROA_{i,t} + \beta_1 \mathsf{Controls}_{i,t-1} + \beta_2 \mathsf{Controls}_{c,t-1} + FE_c + FE_m)$$

• $I_{it} = 1$ if E_{it} above median or 75th percentile

Reallocation

Banks increasing ROA increase relative CD funding

... Regardless of whether market is stressed

Dependent variable: Prob. of CD issuance in excess of the market

	Above median		Above 75th percentile		
Δ ROA	0.024*** (0.005)		0.031** (0.014)		
Controls Month FE Country FE N. Obs.	Yes Yes Yes 10,979		Yes Yes Yes 10,979		

Stress Index

$$Stress\ Index_t = \frac{\sum_{i} R_{i,t}}{CD_{m,t}},$$

- \blacksquare R_{it} : Euro amount of dry-up by i at t
- CD_{mt} : Aggregate CD market size at t
- $\blacksquare \ \, \mathsf{Computed} \ \, \mathsf{at} \ \, \mathsf{monthly} \ \, \mathsf{frequency} \, \to \, \mathsf{[See \ index]}$

Stress Index

$$Stress\ Index_t = \frac{\sum_{i} R_{i,t}}{CD_{m,t}},$$

- \blacksquare R_{it} : Euro amount of dry-up by i at t
- $lacktriangleq CD_{mt}$: Aggregate CD market size at t
- $lue{}$ Computed at monthly frequency o [See index]

■ Interact ΔROA with quantiles of Stress Index

- If effect magnified → Accelerated reallocation
- $\blacksquare \mbox{ If effect disappears} \rightarrow \mbox{Adverse selection worsens}$

Reallocation magnified when market stress is high

... Increasing in quantiles of the Stress Index

 $\label{eq:Dependent variable:} Prob. \ of \ CD \ issuance \ in excess \ of \ the \ market$

	Above	median	Above 75	Above 75th percentile	
Δ ROA * Stress Index in Quartile 2 Δ ROA * Stress Index in Quartile 3 Δ ROA * Stress Index in Quartile 4	0.024*** (0.005)	0.018** (0.009) -0.003 (0.016) 0.033*** (0.012) 0.048**	0.031** (0.014)	0.016*** (0.006) 0.008 (0.006) 0.039 (0.033) 0.030**	
		(0.020)		(0.015)	
Controls Month FE Country FE N. Obs.	Yes Yes Yes 10,979	Yes Yes Yes 10,979	Yes Yes Yes 10,979	Yes Yes Yes 10,979	

- Reallocation magnified when market stress is high
 - ... Increasing in quantiles of the Stress Index

Dependent variable: Prob. of CD issuance in excess of the market

	Above	median	Above 75	Above 75th percentile	
Δ ROA	0.024*** (0.005)	0.018** (0.009)	0.031** (0.014)	0.016*** (0.006)	
Δ ROA * Stress Index in Quartile 2	(0.003)	-0.003 (0.016)	(0.014)	0.008	
Δ ROA * Stress Index in Quartile 3		0.033*** (0.012)		0.039 (0.033)	
Δ ROA * Stress Index in Quartile 4		0.048** (0.020)		0.030** (0.015)	
Controls Month FE Country FE	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	
N. Obs.	10,979	10,979	10,979	10,979	

- High-quality banks do not reduce but *increase* funding
 - Inconsistent with adverse selection being first-order

Conclusion and implications

- No evidence that adverse selection is first-order on wholesale funding market
 - No market freeze
 - Dry-ups predict low future performance → Some informed lenders
 - Dry-up occurs when debt turns information-sensitive
 - \blacksquare Reallocation not random \to From low- to high-quality banks

Conclusion and implications

- No evidence that adverse selection is first-order on wholesale funding market
 - No market freeze
 - $lue{}$ Dry-ups predict low future performance ightarrow Some informed lenders
 - Dry-up occurs when debt turns information-sensitive
 - lacksquare Reallocation not random o From low- to high-quality banks

Low adverse selection can explain market resilience

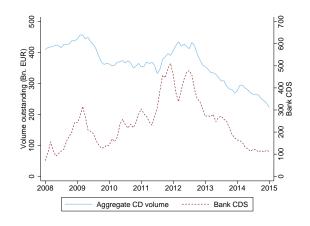
- Disciplinary role of wholesale funding ("tough creditors")
- Challenges the premise of regulatory liquidity ratios
- However, no account for externalities arising from dry-ups

Conclusion and implications

- No evidence that adverse selection is first-order on wholesale funding market
 - No market freeze
 - $lue{}$ Dry-ups predict low future performance ightarrow Some informed lenders
 - Dry-up occurs when debt turns information-sensitive
 - lacksquare Reallocation not random o From low- to high-quality banks

Low adverse selection can explain market resilience

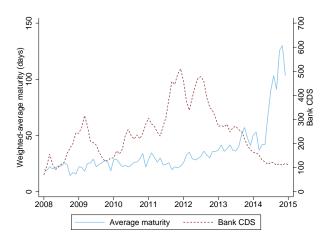
- Disciplinary role of wholesale funding ("tough creditors")
- Challenges the premise of regulatory liquidity ratios
- However, no account for externalities arising from dry-ups


Lender of last resort most likely to benefit weakest banks

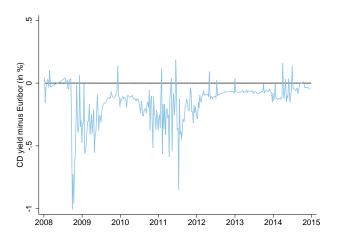
- Consistent with empirical evidence (Drechsel et al. JF 2015)
- ... But in contrast with received theory

The absence of market freeze

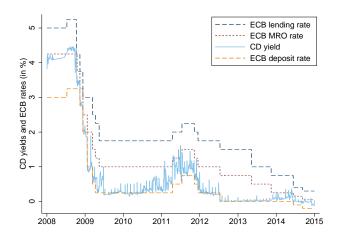
HEC.


- No system-wide drop in volume
 - ... Even when CDS spreads increase

Average maturity of new issues


■ No system-wide drop in average maturity

CD Yields


■ Negative spread with the Euribor of same maturity

CD Yields

■ Yields on CDs with initial maturity up to 7 days

Dry-ups predict future bank characteristics

■ Facing a dry-up predicts an increase in impaired loans

Dependent variable: Δ Impaired loans / Loans

	Baseline		Share CD	Crisis
DryUp	0.582***	0.507***	0.640***	0.612***
$Size_{t-1}$	(0.139)	(0.138) -0.038	(0.177) -0.042*	(0.151) -0.040
ROA_{t-1}		(0.025) -0.011	(0.025) -0.010	(0.025) -0.007
-		(0.038)	(0.038)	(0.038)
${\sf Impaired} \; / \; {\sf Loans}_{t-1}$		-0.017* (0.009)	-0.017* (0.009)	-0.017* (0.009)
GDP growth		-24.918*** (5.044)	-24.463*** (5.068)	-24.706*** (5.031)
$DryUp * Share \; CD \in [4\%, 9\%]$			-0.490 (0.385)	
$DryUp * Share \; CD \geq 9\%$			-0.233 (0.306)	
DryUp * Crisis			(0.300)	-0.052 (0.093)
Adj. R^2 N. Obs.	0.100 676	0.140 675	0.140 675	0.145 675
IV. ODS.	010	013	013	013

Endogeneity checks

■ Effect not magnified for banks with large CD exposure

Dependent variable: $\Delta ROA = ROA_t - ROA_{t-1}$

	Baseline		Share CD	Crisis
DryUp	-0.341**	-0.508***	-0.874***	-0.610***
$Size_{t-1}$	(0.135)	(0.139) -0.018	(0.176) -0.004	(0.143) -0.017
ROA_{t-1}		(0.025) -0.713***	(0.025) -0.717***	(0.025) -0.717***
$Impaired \; / \; Loans_{t-1}$		(0.038) -0.025***	(0.037) -0.026***	(0.038) -0.026***
GDP growth		(0.009) 38.957***	(0.009) 37.561***	(0.009) 38.732***
$DryUp * Share \; CD \in [4\%, 9\%]$		(4.969)	(4.955) 0.372	(4.954)
$DryUp * Share \; CD \geq 9\%$			(0.407) 0.351	
DryUp * Crisis			(0.302)	0.133 (0.192)
Adj. R^2 N. Obs.	-0.001 948	0.407 684	0.415 684	0.411 684

Endogeneity checks

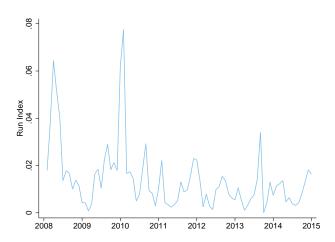
■ Facing a dry-up does not predict a decrease in size

Dependent variable: Δ Size

	Baseline		Share CD	Crisis
DryUp	-0.039	-0.014	-0.008	-0.019
$Size_{t-1}$	(0.035)	(0.013) -0.005**	(0.017) -0.005**	(0.018) -0.005**
ROA_{t-1}		(0.003) 0.008**	(0.002) 0.008**	(0.002) 0.008**
${\sf Impaired} \; / \; {\sf Loans}_{t-1}$		(0.003) -0.000	(0.003) -0.000	(0.003) -0.000
GDP growth		(0.001) 0.028	(0.001) 0.054	(0.001) 0.014
$DryUp * Share \; CD \in [4\%, 9\%]$		(0.497)	(0.500) -0.009	(0.497)
$DryUp * Share \; CD \geq 9\%$			(0.041) -0.017	
DryUp * Crisis			(0.030)	0.008 (0.007)
Adj. R^2 N. Obs.	0.031 950	0.197 685	0.195 685	0.198 685

Consistency checks

Predictability remains when market stress is high


Dependent variable: $\Delta ROA = ROA_t - ROA_{t-1}$

	Baseline		Share CD	Crisis
DryUp	-0.341** (0.135)	-0.508*** (0.139)	-0.874*** (0.176)	-0.610*** (0.143)
$Size_{t-1}$	(0.133)	-0.018 (0.025)	-0.004 (0.025)	-0.017 (0.025)
ROA_{t-1}		-0.713*** (0.038)	-0.717*** (0.037)	-0.717*** (0.038)
$Impaired \; / \; Loans_{t-1}$		-0.025*** (0.009)	-0.026*** (0.009)	-0.026*** (0.009)
GDP growth		38.957*** (4.969)	37.561*** (4.955)	38.732*** (4.954)
$DryUp * Share \; CD \in [4\%, 9\%]$		(4.909)	0.372 (0.407)	(4.954)
$DryUp * Share \; CD \geq 9\%$			0.351 (0.302)	
DryUp * Crisis			(0.302)	0.133 (0.192)
$ \mbox{Adj. } R^2 $	-0.001 948	0.407 684	0.415 684	0.411 684

Stress Index

- Captures number and magnitude of dry-ups
 - Both partial and full

